Department of Medical Biotechnology

Webpage

Head

professor Józef Dulak, PhD, DSc
room: B121 (3.0.25), phone: + 48 12 664 63 75

Staff

professor Alicja Józkowicz, PhD, DSc, room: B103 (3.0.35), phone: + 48 12 664 64 11
Agnieszka Łoboda, PhD, DSc, room (MCB): 2/24, phone: + 48 12 664 64 12
Agnieszka Jaźwa, PhD, room (MCB): 2/24, phone: + 48: 12 664 64 12
Urszula Florczyk-Soluch, PhD, room: B017 (3.01.7), phone: + 48 12 664 63 98 (maternity leave)
Anna Grochot-Przęczek, PhD, room: B017 (3.01.7), phone: + 48 12 664 63 98
Neli Kachamakova-Trojanowska, PhD, room (MCB): 2/24 phone: + 48 12 664 60 12
Magdalena Kozakowska, PhD, room: B017 (3.01.7), phone: + 48 12 664 63 98
Witold Nowak, PhD, room: B017 (3.01.7), phone: + 48 12 664 63 98 (post-doc: King's College, GB)
Aleksandra Piechota–Polańczyk, PhD, room (MCB): 2/24 phone: + 48 12 664 60 12
Jacek Stępniewski, PhD, room: B017 (3.01.7), phone: + 48 12 664 63 98
Agata Szade, PhD, room: B017 (3.01.7), phone: + 48 12 664 63 98 (post-doc: Stanford University, USA)
Krzysztof Szade, PhD, room: B017 (3.01.7), phone: + 48 12 664 63 98 (post-doc: Stanford University, USA)

Agnieszka Andrychowicz-Róg, MSc, room: B110 (3.0.2), phone: + 48 12 664 64 06    
Janusz Drebot, MSc, Eng, room: B110 (3.0.2), phone: + 48 12 664 64 06
Karolina Hajduk, MSc, animal facility room, phone: + 48 12 664 66 09; 66 07; 54 49; 68 33
Tomasz Hajduk, referent techniczny, animal facility room, tel.: 12 664 66 09;6607; 5449;6833
Elżbieta Śliżewska, MSc, Eng, animal facility room, phone: + 48 12 664 66 09; 6607; 54 49;68 33 (maternity leave)
Joanna Uchto-Bajołek, MSc, room: B104 (3.0.34), phone: + 48 12 664 61 36
Ewa Werner, MSc, Eng, animal facility room, phone: + 48 12 664 66 09; 66 07; 54 49; 68 33

PhD students

Iwona Bronisz-Budzyńska, room: B017 (3.01.7), phone: + 48 12 664 63 98
Mateusz Jeż, room: B017 (3.01.7), phone: + 48 12 664 63 98
Damian Klóska, room: B017 (3.01.7), phone: + 48: 12 664 63 98
Anna Kusienicka, room: B017 (3.01.7), phone: + 48 12 664 63 98 (maternity leave)
Olga Mucharoom: B017 (3.01.7), phone: + 48 12 664 63 98
Paulina Podkalickaroom: B017 (3.01.7), phone: + 48 12 664 63 98
Mateusz Tomczyk, room: B017 (3.01.7), phone: + 48 12 664 63 98
Monika Żukowska, room: B017 (3.01.7), phone: + 48 12 664 63 98

Research topics

  • Molecular mechanisms of Duchenne muscular dystrophy – role of heme oxygenase-1 and microRNAs
  • Stem cell biology: mechanisms of cellular reprogramming and differentiation
  • Vascular and muscle biology: mechanisms of angiogenesis and vasculogenesis, differentiation of satellite cells
  • Medical biotechnology: gene and cell therapy in modulation of neovascularization and inflammation
  • Cancer biology: mechanisms of tumor initiation, growth, metastasis and resistance to therapy, role of heme oxygenase-1 and hypoxia
  • Role of microRNAs in cardiovascular disorders, kidney fibrosis and tumor development
  • Role of hypoxia, anti-oxidant genes and microRNAs in regulation of gene expression

Methods and specialistic equipment

Selected techniques

  • Flow cytometry and cell sorting
  • Molecular in vivo imaging (Vevo 2100, IVIS© Lumina II, Laser Doppler)
  • Laser microdissection method
  • Gene silencing by CRISPR/Cas and shRNA methods
  • siRNA & microRNAs technology
  • Angiogenic assays in vitro: tube formation on matrigel, ring aortic assay, spheroid assay.
  • In vivo models: hind limb ischemia, wound healing, tumor inoculation, chemical carcinogenesis, mouse model of myocardial infarction
  • Induced pluripotent stem cells (iPSCs) technology
  • Gene cloning, construction of plasmids and viral vectors: retroviral, lentiviral, adenoviral, AAV
  • Regulated gene expression: hypoxia-induced and tetracycline-induced expression systems, establishing of stably-transfected cell lines
  • Isolation and culture of primary cells: satellite cells, hematopietic stem cells, mesenchymal stromal cells, endothelial cells, renal proximal epithelial cells

Animal models, kept in modern animal facility (SPF – specific pathogen free)

  • miR-146a knockout mice
  • miR-378a knockout mice
  • mdx mice (dystrophin knockout
  • HO-1 knockout mice
  • HO-1-GFP knockout ice
  • HO-1 floxed mice (knock out & knock in)
  • Nrf2 knockout mice
  • diabetic db/db mice
  • Cre-recombinase cell-specific mice

Specialized equipment
Modern animal facility operating in SPF standard houses several strains of knockout and transgenic mice and rats, kept in individually ventilated cages (IVC). The facility is equipped in:

  • Laser Doppler System for blood flow measurement in animals
  • Vevo 2100 (VisualSonics) micro-ultrasound system for high-resolution imaging of small animals
  • IVIS© Lumina II (Caliper Life Science) imaging system for both fluorescent and bioluminescent imaging in vivo
  • scil Vet abc hematology analyzer (different animal species can be analyzed).

Flow cytometry laboratory, equipped in:

  • BD LSRFortessa flow cytometer
  • MoFloTMXDP (Beckman Coulter) high-speed cell sort
  • ImageStreamX (Amnis Corporation) – system which integrates the features of flow cytometry and fluorescent microscopy combined with a modern system of image analysis

Histological laboratory, equipped in:

  • automated tissue processor
  • automated tissue embedding system
  • paraffin & crytostat microtome
  • automated staining system for paraffin sections
  • Laser Microdissection LMD7000 (Leica) for cutting specific structures form frozen and paraffin-embedded

and:

  • Chambers for hypoxic conditions/hypoxic incubator for cells culturing in low oxygen concentration
  • Bioanalyzer 2100 (Agilent) for checking the RNA integrity
  • Real-time PCR StepOnePlus (Applied Biosystem) for analysis of a gene expression profile on mRNA level, as well as microRNAs analysis
  • AmpliSpeed slide cycler (Beckman Coulter) for RT-PCR reaction from very small amount of samples (even one cell)
  • FlexMap3D (Luminex) for measurement of a dozen or so of cytokines/growth factors in a small volume of sample (serum/plasma/medium)
     

Current projects

  1. Agnieszka Jaźwa: Role of heme oxygenase-1 in monocyte- and macrophage-mediated progression of ischemic heart disease. (2015-2020). SONATA BIS, National Science Centre (NCN).
  2. Alicja Józkowicz: DNA repair in hematopoietic stem cells: what is a role of nuclear heme oxygenase-1? (2016-2019). HARMONIA, National Science Centre (NCN).
  3. Józef Dulak: The role of heme oxygenase-1 in cardiomyocyte differentiation from induced pluripotent stem cells (HMOX-CARD). (2015-2018). HARMONIA, National Science Centre (NCN).
  4. Aleksandra Piechota-Polańczyk: The role of heme oxygenase 1 in abdominal aortic aneurysm development. (2015-2018). FUGA, National Science Centre (NCN).
  5. Józef Dulak: Role of microRNAs and inflammation in injury and regeneration of skeletal muscles in Duchenne muscular dystrophy. (2013-2018). MAESTRO, National Science Centre (NCN).
  6. Jacek Stępniewski: New mechanisms of cellular reprogramming: role of TLR3 and RIG-1 activation and downstream anti-inflammatory response to different viral vector. (2014-2016). PRELUDIUM, National Science Centre (NCN).
  7. Witold Nowak: Influence of heme oxygenase-1 on the statin-induced paracrine angiogenic activity of human peripheral blood CD34+ cells. (2014-2016). PRELUDIUM, National Science Centre (NCN).
  8. Krzysztof Szade: Protection of hematopoietic stem cells from premature aging – classical and non-classical role of heme oxygenase-1. (2014-2016). PRELUDIUM, National Science Centre (NCN).
  9. Józef Dulak: Novel mechanisms of tissue repair: effect of miR-378/miR-378* on blood vessel formation for ischemic muscles regeneration and wound healing. (2013-2016). OPUS, National Science Centre (NCN).
  10. Alicja Józkowicz: Heme oxygenase-1 and progression of melanoma: role in cancer initiating cells. (2013-2016). HARMONIA, National Science Centre (NCN).
  11. Anna Grochot-Przęczek: Molecular mechanism of GDF-15 and SDF-1 induced angiogenesis – atypical role of Nr2 transcription factor. (2013-2016). OPUS, National Science Centre (NCN).
  • Mesenchymal stem cells and MSC-enriched scaffold as an alternative therapy for myocardial insufficiency. National Centre for Research and Development (NCBiR), STRATEGMED Programme. PHOENIX consortium, project coordinated by Kardio-Med Silesia in Zabrze. (2015-2017).
  • Epigenetic therapies in oncology. National Centre for Research and Development (NCBiR), STRATEGMED Programme. EPTHERON consortium, project coordinated by Selvita Ltd. Company. (2015-2017).
  • New inhibitors of heme oxygenase-1 as potential anticancer drugs. National Centre for Research and Development (NCBiR). HEMOKS consortium with Selvita Ltd. Company. (2014-2016).

Selected publications

  1. Heme oxygenase-1 controls the oxidative stress - HDAC4 - miR-206 axis in rhabdomyosarcoma. Ciesla M et al., Cancer Res, 2016, accepted.
  2. Endothelial precursor cell-based therapy to target the pathologic an¬giogenesis and compensate tumor hypoxia. Collet G et al., Cancer Lett. 2016; 370: 345-57.
  3. Induced pluripotent stem cells as a model for diabetes investigation. Stepniewski J et al., Sci Rep. 2015; 5: 8597.
  4. Nrf2-heme oxygenase-1 axis in mucoepidermoid carcinoma of the lung: Antitumoral effects associated with down-regulation of matrix metalloproteinases. Tertil M et al., Free Radic Biol Med. 2015; 89: 147-57.
  5. Heme oxygenase-1 is required for angiogenic function of bone marrow-derived progenitor cells: role in therapeutic revascularization. Grochot-Przeczek A et al., Antioxid Redox Signal. 2014; 20: 1677-1692.
  6. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Kozakowska M et al., Antioxid Redox Signal. 2014; 20: 1827-1850.
  7. Nrf2 regulates angiogenesis: effect on endothelial cells, bone mar- row-derived proangiogenic cells and hind limb ischemia. Florczyk U et al., Antioxid Redox Signal. 2014; 20:1693-1708.
  8. Murine bone marrow Lin-Sca-1+CD45- very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. Szade K et al., PLoS One, 2013; 8: e63329.
  9. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization and metastasis. Skrzypek K et al., Antioxid Redox Signal, 2013, 19: 644-660.
  10. Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs. Kozakowska M et al., Antioxid Redox Signal. 2012; 16: 113-127.

Batchelor/master thesis topics

  • Role of HO-1 and microRNAs in Duchenne muscular dystrophy
  • Stem cell differentiation and reprogramming
  • Induced pluripotent stem cells – generation and differentiation
  • Plasmid and viral vectors – construction and validation in experimental gene therapy
  • Role of oxidative stress in regulation of gene expression in endothelial cells, progenitor cells and tumor cells
  • Role of heme oxygenase-1 in angiogenesis, vasculogenesis, resistance of cancer cells to therapy; role of heme oxygenase-1 in wound healing
  • Gene and cell therapy for treatment of cardiovascular disorders

Requirements for candidates

•    Basic knowledge on cell biology and molecular biology
•    Techniques – cell culture and molecular biology techniques
•    Excellent command/highly proficient in spoken and written English
•    Teamwork capabilities